CORRESPONDENCE

trated between center conductor and lower
ground plane, ie., in the dielectric board,
and the velocity goes down.

Finally, the thickness of the dielectric
board was changed, again for the three preced-
ing lines. The positions of the center conduc-
tor and of the upper edge of the board were
kept constant, and the thickness was varied
by changing the location of the lower edge
of the board. The results for d values of =18,
24, and 30 mils are shown in Fig. 6, The
impedance and phase velocity decrease as ex-
pected with increasing thickness.

The impedance slope of these curves indi-
cates a Z versus d dependence of

0.39 @/mil for the line width w =72 mils,
0.32 @/mil for the line width w=120 mils,
and
0.19 Q/mil for the line width w=192 mils.

As the impedance ratios of the three lines
are 1:0.76:0.56 and the Z versus 4 depen-
dences are 1:0.82:0.49, it follows that achange
in d is about equally critical for lower and
higher ohmic lines within the range of con-
sideration.

The fractional velocity variation is the
same as the fractional impedance variation.

The accuracy of these calculations for Z
is typically around 1 percent but not worse
than 2 percent, for v/v, typically around 0.5
percent but not worse than 1 percent.
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Realizations of a Duo-Pole Branch of
an Elliptic-Function Bandstop Filter

This correspondence illustrates six realiza-
tions of the TEM line (transformed) equiva-
lent of the LC network A of Fig. 1. Network
A is here taken to represent a shunt branch
of a low-pass elliptic-function ladder filter [1].
Richards’ transformation [2] converts a
lumped element low-pass filter to a transmis-
sion-line bandstop filter [3]-[6). Each filter
element, L or C, is then replaced by a short-
or open-circuited quarter-wave stub. Thus,
network A is transformed to network B, with
parameters as defined in Fig. 1. The six
stripline and reentrant slabline networks C-H
are equivalent to network B and are well
suited for microwave filters. The character-
istic impedances of the lines in networks C, D,
E, and H are given in Fig. 1, and the coupled-
line impedances of networks F and G are
given in Schiffman and Matthaei [5] and
Schiffman [7]. Although networks F and G
are shown as cascaded sections [5], [7] (not
duo-pole type), here they are shunt-connected
with the far terminals open circuited. In net-
works B-D, line Z, is short circuited and line
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Stripline and reentrant slabline realizations of a shunt duo-pole branch of an elliptic-function bandstop

filter. Here, A =1’ tan [(r/2)(wo —w1) /wo)] where w1 and w1’ are corresponding frequencies (usually taken as band-
edge frequencies) in the bandstop and low-pass frequency domains, and we is center of stopband.

Z, is open circuited at its far end, andlines

Z, and Z, are in series with each other at

their near ends. In networks E and H, Z, is
open circuited and in cascade with Z;’.
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Characteristic Impedance of Multifin
Transmission Lines

Several years ago, the author had occasion
to investigate the characteristic impedance
properties of a TEM transmission line of
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unusual cross section. Specifically, the cross
section consisted of a round outer conductor
with a center conductor composed of a
number of thin fins symmetrically positioned
about the axis of the line. Examples of this
general class of cross section are illustrated
in Fig. 1 for the cases of two, three, four,
and six fins. Solutions for the characteristic
impedances of this type of configuration were
obtained by an interesting series of conformal
transformations that mapped the multifin
line geometry into that of a symmetric strip
transmission line. Since the characteristic
impedance of the latter is well known, curves
can readily be generated for the multifin line
impedance.

The basic steps in the mapping process
are outlined in Fig. 2. First, geometries hav-
ing other than two fins are mapped into the
two-fin case by applying the transformation

2 = 2 1)

where 1 is the number of fins in the given
geometry (z plane), Since this transformation
maps 2/n of the multifin line space into the
entire space of the two-fin line, the effect
will be to establish the relations

2

Zy=—12Zs @)
n
when
Tn 7y 2/n
2= (= 3
7~ (&) ®

where Z,, ¥n, R, and Z,, r;, R; are the char-
acteristic impedance, fin radial dimension,
and shield radius of the n-fin and two-fin lines,
respectively. Note that the z and z’ planes are
normalized so that the shield lies on the unit
circle.
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Fig. 1. Cross sections of n-fin transmission lines.
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Fig. 3. Characteristic impedance of multifin lines.

The next step is to apply the transforma-
tion

t_,l-—z’
R P

to the two-fin configuration. This transforma-
tion maps the unit circle of the z’ plane onto
the real axis of the ¢ plane, and maps the fin
on the real axis of the z’ plane onto a portion
of the imaginary axis of the 7 plane, as shown
in Fig. 2(c). Finally, the ¢ plane geometryis
converted into a symmetric strip transmission
line by the transformation

t = logt. )

This relationship maps the positive real axis
of the ¢ plane onto the real axis of the ¢’
plane, the negative real axis of the 7 plane
onto the real axis of the # plane, the negative
real axis of the ¢ plane onto the line # =u'+jr,
and the positive imaginary axis of the ¢ plane
onto the line ¢’ =u'+jr/2. The portion of the
t plane imaginary axis identified with the
transformed fin turns out to be symmetrically
positioned in the fashion of a strip transmis-
sion line. Consequently, the characteristic im-
pedances of the strip transmission line and
two-fin line will be equal when

)

1+

2 E
2=—10g—~2— ()

b * .

R,

where w is the width of the strip conductor
and b the ground-plane spacing,

Equations (2), (3), and (6) have been used
along with data! on the characteristic imped-
ance of zero-thickness strip transmission line
to generate the curve of Fig. 3 for zero-thick-
ness multifin lines, These curves show the
dependence of characteristic impedance on the
ratio r/R for lines of two, three, four, and
six fins. Since it might be expected intuitively
that a line with a large number of fins would
begin to approach the r/R values of an
ordinary coaxial line, this latter case has been
plotted for comparison.
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Comment on ““Cylindrical Waveguides
Containing Inhomogeneous Dielectric’’

In the above correspondence, AhSam and
Klinger! discussed the difficulty of obtaining
complete analytic solutions for propagation of
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1 E. AhSam and Y. Klinger, IEEE Trans. Microwave
Theory and Techn ques (Correspondence), vol. MTT-15,
p. 60, January 1967.

electromagnetic waves in inhomogencous
media with circular cylindrical symmetry. In
order to aid the search for exact solutions,
they studied the special case in which the rela-
tive permittivity, independent of the azimuthal
and axial coordinates, varies inversely as the
square of the radius so that two of the six
field equations uncouple.

I should like to point out that AhSam and
Klinger overlooked the existence of certain
classes of modes. That modes for nonzero
azimuthal variation (i.e., 750 in their nota-
tion) must exist, independently of the rela-
tionship among a, b, and / (the radii of the
metal cylinders containing the inhomogeneous
medium and the constant entering the relative
permittivity), can be deduced from the follow-
ing arguments, First, as the frequency is
raised, the medium appears more and more
uniform locally, and a high-frequency wave
launched in some direction not in the r-z plane
should have no difficulty propagating down
the waveguide. Secondly, since the modes in
any closed cylindrical waveguide form a
complete set, one should be able to expand a
function of ¢ in terms of it, so that the set
must contain modes with 170,

Except in very special cases, azimuthally
dependent modes in circular cylindrical struc-
tures are hybrid modes, since it is generally
not possible to satisfy all the boundary con-
ditions with just TE or TM. Thus, AhSam
and Klinger are correct in stating that TM
solutions (only £, gi, and g; nonzero) and TE
solutions (only g, fi, and f£) do not exist for
n7#0. It is also true that all six components
cannot exist simultaneously (except for the
special relations between a, b, and /) since
the two characteristic equations (13) and (18)*
would not have simultaneous solutions. How-
ever, it is possible to have modes with nonzero
Jfis fos f3, 81, and gs, OF £i. 5, g1, £2, and gz which
satisfy all the given conditions, In the first
case, f; is given as in (12),! with

8 d
= —{
o= o @
f3=“—J—T/3f2
o
=k kel
o= (@? o
kel 1 d
gs =j— — (rf2)

alow)? r dr

and k. determined by (13). Similarly, a pos-
sible solution using (18) to determine %, has
g as given by (16)! and

72k,
fi=—1¢
o
i d
[y
@ dr .
8 d
g = ok, dr (rg)
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gs = jr—g.
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